XDVMP eXclusive Diffractive Vector Meson Production

Tobias Toll

Present Status

EIC task force meeting 2/12-2010

Theory background
What has been done since INT
Results

Incoherent Scattering

Nucleus dissociates $(f \neq i)$: complete set

Good, Walker

$$16\pi\sigma_{\text{incoherent}} = \sum_{f \neq i} \langle i|\mathcal{A}|f\rangle^{\dagger} \langle f|\mathcal{A}|i\rangle = \sum_{f} \langle i|\mathcal{A}|f\rangle^{\dagger} \langle f|\mathcal{A}|i\rangle - \langle i|\mathcal{A}|i\rangle^{\dagger} \langle i|\mathcal{A}|i\rangle =$$
$$\langle i||\mathcal{A}|^{2}|i\rangle - |\langle i|\mathcal{A}|i\rangle|^{2} = \langle |\mathcal{A}|^{2}\rangle - |\langle \mathcal{A}\rangle|^{2}$$

The incoherent cross-section is the variance of the amplitude

$$\frac{\mathrm{d}\sigma_{\mathrm{incoherent}}}{\mathrm{d}t} = \frac{\mathrm{d}\sigma_{\mathrm{total}}}{\mathrm{d}t} - \frac{\mathrm{d}\sigma_{\mathrm{coherent}}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}\sigma_{\mathrm{total}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| \mathcal{A} \right|^2 \right\rangle$$

$$\frac{\mathrm{d}\sigma_{\mathrm{coherent}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \langle \mathcal{A} \rangle \right|^2$$

Averaging

$$\frac{\mathrm{d}\sigma_{\mathrm{coherent}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \langle \mathcal{A} \rangle \right|^2$$

The average should be taken over nucleon configurations within the nucleus (the nucleon configuration is not a QM observable).

$$\langle \bullet \rangle = \int d^2 \boldsymbol{b}_1 \dots d^2 \boldsymbol{b}_n \, \mathcal{P} \left(\boldsymbol{b}_1, \dots, \boldsymbol{b}_n \right) \bullet$$

$$\langle \mathcal{A}(\Delta) \rangle_{\Omega} = \int \mathrm{d}\Omega P(\Omega) \mathcal{A}(\Omega, \Delta) \approx \frac{1}{C_{\max}} \sum_{j=1}^{C_{\max}} \mathcal{A}(\Omega_j, \Delta)$$

Coherent

$$\frac{\mathrm{d}\sigma_{\mathrm{coherent}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \frac{1}{C_{\mathrm{max}}} \sum_{j=1}^{C_{\mathrm{max}}} \mathcal{A}(\Omega_{j}) \right|^{2}$$

$$\langle \mathcal{A} \rangle_{\Omega} \approx \frac{1}{C_{\mathrm{max}}} \sum_{j=1}^{C_{\mathrm{max}}} \int \mathrm{d}r \int \frac{\mathrm{d}z}{4\pi} \left(\Psi_{V}^{*} \Psi \right) (r, z)$$

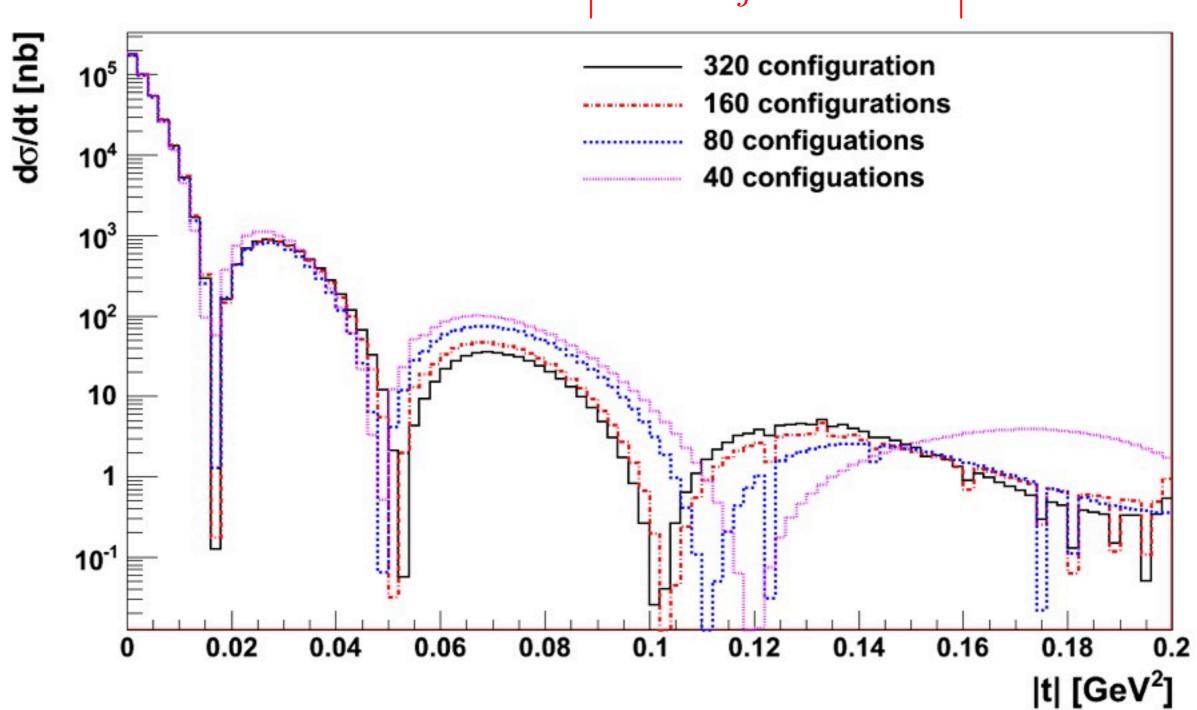
$$\int \mathrm{d}b \frac{\mathrm{d}^{2}\sigma_{q\bar{q}}}{\mathrm{d}^{2}\mathbf{b}} (x, r, b, \Omega_{j}) (2\pi r) (2\pi b) J_{0}([1 - z]r\Delta) J_{0}(b\Delta)$$

 ${\cal A}$ is a Fourier transform of b. This means that small variations in b will be seen at large t and vice versa

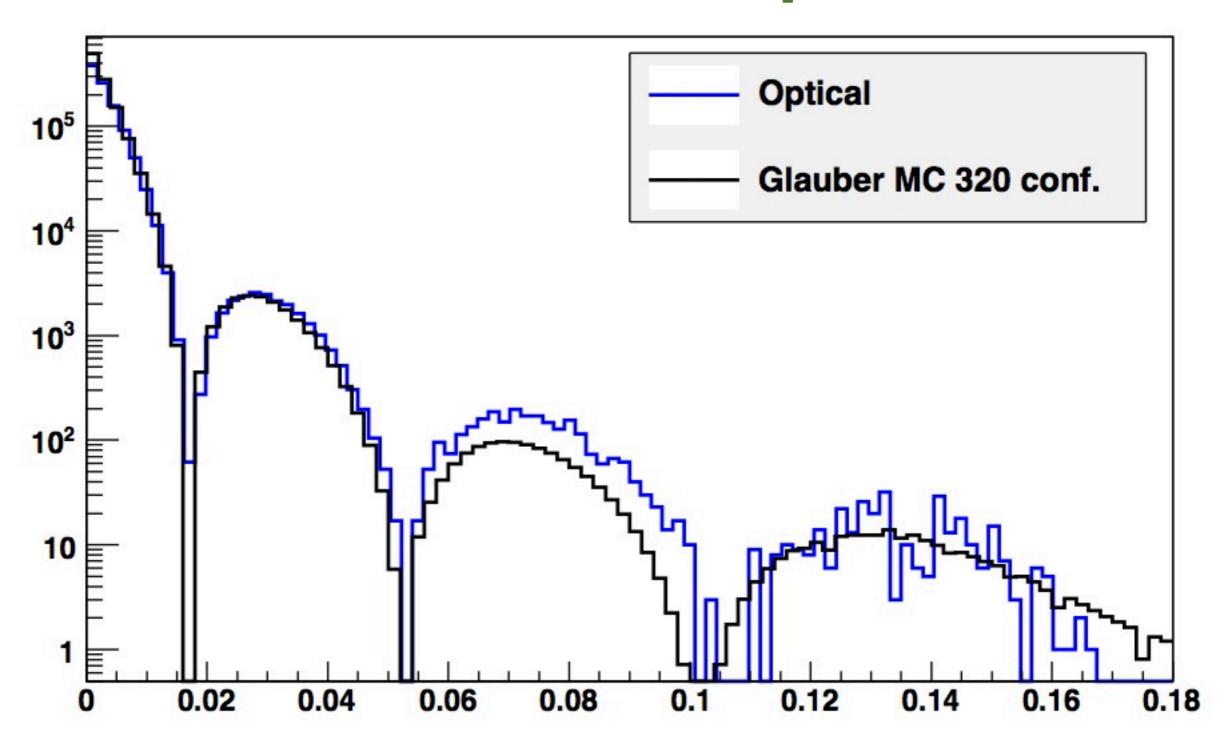
The question is how many configuration is needed to be averaged over for the cross-section to converge.

Coherent

$$\frac{d\sigma_{\text{coherent}}}{dt} = \frac{1}{16\pi} \left| \frac{1}{C_{\text{max}}} \sum_{j=1}^{C_{\text{max}}} \mathcal{A}(\Omega_j) \right|^2$$



Glauber vs. Optical



Better way?

~200 configurations seem excessive. Is there a better way?

2 Approaches

$$\langle \mathcal{A} \rangle_{\Omega} \approx \frac{1}{C_{\text{max}}} \sum_{j=1}^{C_{\text{max}}} \int dr \int \frac{dz}{4\pi} \left(\Psi_V^* \Psi \right) (r, z)$$

$$\int db \frac{d^2 \sigma_{q\bar{q}}}{d^2 \mathbf{b}} (x, r, b, \Omega_j) (2\pi r) (2\pi b) J_0([1 - z]r\Delta) J_0(b\Delta)$$

The first approach:

Integrate angular dependences analytically. The remaining angular dependences are then averaged over in the sum. Pro: The numerical integration is ID in b and therefore fast. Con: Need to average over more configurations for the cross-section to converge.

2nd Approach:

Integrate over full nucleus.

Pro: Need fewer configurations.

Con: Slower numerical integration.

$$\langle \mathcal{A} \rangle_{\Omega} pprox \frac{1}{C_{\max}} \sum_{j=1}^{C_{\max}} Im(\mathcal{A}(\Omega_j)) + \frac{1}{C_{\max}} \sum_{j=1}^{C_{\max}} Re(\mathcal{A}(\Omega_j))$$

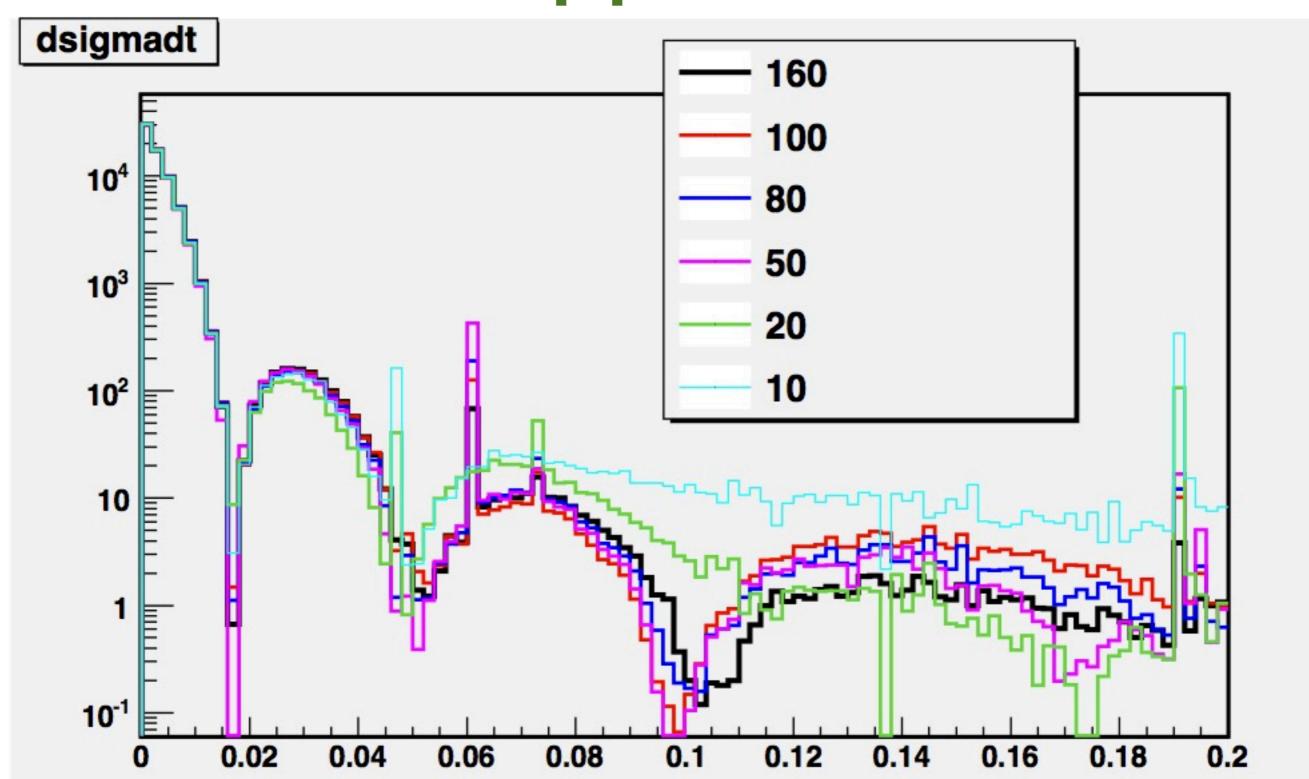
$$Im(\mathcal{A}) = \int_{0}^{r_{\text{max}}} dr \int_{0}^{1} dz \int_{0}^{b_{\text{max}}} db \int_{0}^{2\pi} d\phi_{b\Delta}$$

$$= \frac{1}{2} r \left(\Psi_{V}^{*} \Psi \right) (r, z) J_{0}([1 - z] r \Delta) b \cos(b\Delta \cos \phi_{b\Delta}) \frac{d^{2} \sigma_{q\bar{q}}}{d^{2} \mathbf{b}} (x, r, b, \phi_{b\Delta}, \Omega)$$

$$Re(\mathcal{A}) = \int_{0}^{r_{\text{max}}} dr \int_{0}^{1} dz \int_{0}^{b_{\text{max}}} db \int_{0}^{2\pi} d\phi_{b\Delta}$$

$$= \frac{1}{2} r \left(\Psi_{V}^{*} \Psi \right) (r, z) J_{0}([1 - z] r \Delta) b \sin(b\Delta \cos \phi_{b\Delta}) \frac{d^{2} \sigma_{q\bar{q}}}{d^{2} \mathbf{b}} (x, r, b, \phi_{b\Delta}, \Omega)$$

2nd Approach:



Calculation times

Approach I		Approa	Approach 2	
# conf	time		time	
5	3 min 20 sec	5	6 min 39 sec	
10	4 min 35 sec	10	13 min 49 sec	
20	7 min 16 sec	20	20 min 41 sec	
40	10 min 54 sec	80	84 min 56 sec	
80	19 min 40 sec	100	102 min 45 sec	
160	39 min 6 sec			
320	73 min 22 sec			

Approach I is preferred!

To do:

Still a lot